References

Cited References

The following references are cited in the documentation. The bibliography is produced with

```@bibliography
```
[1]
C. Brif, R. Chakrabarti and H. Rabitz. Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010).
[2]
M. H. Goerz, S. C. Carrasco and V. S. Malinovsky. Quantum Optimal Control via Semi-Automatic Differentiation. Quantum 6, 871 (2022).
[3]
D. J. Tannor. Introduction to Quantum Mechanics: A Time-Dependent Perspective (University Science Books, Sausalito, California, 2007).
[4]
P. Brumer and M. Shapiro. Principles and Applications of the Quantum Control of Molecular Processes (Wiley Interscience, 2003).
[5]
M. Shapiro and P. Brumer. Quantum Control of Molecular Processes. Second Edition (Wiley and Sons, 2012).
[6]
C. P. Koch. Controlling open quantum systems: tools, achievements, and limitations. J. Phys.: Condens. Matter 28, 213001 (2016).
[7]
G. von Winckel and A. Borzì. Computational techniques for a quantum control problem with H$^1$-cost. Inverse Problems 24, 034007 (2008).
[8]
M. Goerz. Optimization of a Controlled Phasegate for Ultracold Calcium Atoms in an Optical Lattice. Diplomarbeit, Freie Universität Berlin (2010).
[9]
M. Goerz. Optimizing Robust Quantum Gates in Open Quantum Systems. Ph.D. Thesis, Universität Kassel (2015). See https://michaelgoerz.net for additional formats. Source available on Github.
[10]
Wikipedia: Schrödinger equation. Accessed on Oct 24, 2023.
[11]
F. K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler and D. Sugny. An introduction into optimal control for quantum technologies, arXiv:2003.10132 (2020).
[12]
E. A. Katrukha, M. Mikhaylova, H. X. van Brakel, P. M. van Bergen en Henegouwen, A. Akhmanova, C. C. Hoogenraad and L. C. Kapitein. Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat. Commun. 8, 14772 (2017), biorXiv:089284.
[13]
F. Sauvage and F. Mintert. Optimal Quantum Control with Poor Statistics. PRX Quantum 1, 020322 (2020). HAL:hal-03612955.
[14]
E. Brion. Contrôle Quantique et Protection de la Cohérence par effet Zénon, Applications à l'Informatique Quantique. Ph.D. Thesis, Université Pierre et Marie Curie - Paris VI (2014). HAL:tel-00007910v2.
[15]
H. A. Fürst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero, T. Calarco, F. Schmidt-Kaler, K. Singer and C. P. Koch. Controlling the transport of an ion: Classical and quantum mechanical solutions. New J. Phys. 16, 075007 (2014). Special issue on coherent control of complex quantum systems.
[16]
I. R. Sola, B. Y. Chang, S. A. Malinovskaya and V. S. Malinovsky. Quantum Control in Multilevel Systems. In: Advances In Atomic, Molecular, and Optical Physics, Vol. 67, edited by E. Arimondo, L. F. DiMauro and S. F. Yelin (Academic Press, 2018); Chapter 3, pp. 151–256.

Other References

The following are non-cited references (everything in the .bib file), included here to show how bibliographies are rendered for various types of materials. The list of references is produced with

```@bibliography
*
```
[17]
O. V. Morzhin and A. N. Pechen. Krotov method for optimal control of closed quantum systems. Russ. Math. Surv. 74, 851 (2019).
[18]
M. H. Goerz, T. Calarco and C. P. Koch. The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B 44, 154011 (2011), arXiv:1103.6050. Special issue on quantum control theory for coherence and information dynamics.
[19]
M. Tomza, M. H. Goerz, M. Musiał, R. Moszynski and C. P. Koch. Optimized production of ultracold ground-state molecules: Stabilization employing potentials with ion-pair character and strong spin-orbit coupling. Phys. Rev. A 86, 043424 (2012), arXiv:1208.4331.
[20]
M. H. Goerz, D. M. Reich and C. P. Koch. Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 16, 055012 (2014). Special issue on coherent control of complex quantum systems.
[21]
M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch and K. B. Whaley. Robustness of high-fidelity Rydberg gates with single-site addressability. Phys. Rev. A 90, 032329 (2014), arXiv:1401.1858. Editor's suggestion.
[22]
G. Jäger, D. M. Reich, M. H. Goerz, C. P. Koch and U. Hohenester. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of GRAPE and Krotov optimization schemes. Phys. Rev. A 90, 033628 (2014), arXiv:1409.2976.
[23]
M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero and T. Calarco. Optimizing for an arbitrary perfect entangler. II. Application. Phys. Rev. A 91, 062307 (2015), arXiv:1412.7350.
[24]
P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M. Reich, M. H. Goerz and C. P. Koch. Optimizing for an arbitrary perfect entangler: I. Functionals. Phys. Rev. A 91, 062306 (2015), arXiv:1412.7347.
[25]
M. H. Goerz, K. B. Whaley and C. P. Koch. Hybrid Optimization Schemes for Quantum Control. EPJ Quantum Technol. 2, 21 (2015).
[26]
M. H. Goerz, F. Motzoi, K. B. Whaley and C. P. Koch. Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf 3, 37 (2017).
[27]
A. A. Setser, M. H. Goerz and J. P. Kestner. Local gradient optimization of modular entangling sequences. Phys. Rev. A 97, 062339 (2018), arXiv:1804.08783.
[28]
M. H. Goerz and K. Jacobs. Efficient optimization of state preparation in quantum networks using quantum trajectories. Quantum Sci. Technol. 3, 045005 (2018), arXiv:1801.04382.
[29]
M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich and C. P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys. 7, 080 (2019). The krotov Pyhon package is available on Github.
[30]
[31]
G. Raithel, A. Duspayev, B. Dash, S. C. Carrasco, M. H. Goerz, V. Vuletić and V. S. Malinovsky. Principles of tractor atom interferometry. Quantum Sci. Technol. 8, 014001 (2022).
[32]
S. C. Carrasco, M. H. Goerz, Z. Li, S. Colombo, V. Vuletić and V. S. Malinovsky. Extreme Spin Squeezing via Optimized One-Axis Twisting and Rotations. Phys. Rev. Applied 17, 064050 (2022), arXiv:2201.01744.
[33]
M. H. Goerz, M. A. Kasevich and V. S. Malinovsky. Robust Optimized Pulse Schemes for Atomic Fountain Interferometry. Atoms 11, 36 (2023), arXiv:2212.12602. Special issue on Advances in and Prospects for Matter Wave Interferometry.
[34]
D. J. Tannor and Y. Jin. Design of Femtosecond Pulse Sequences to Control Photochemical Products. In: Mode Selective Chemistry, edited by J. Jortner, R. D. Levine and B. Pullman (Springer, 1991); pp. 333–345.
[35]
M. Nielsen and I. L. Chuang. Quantum error-correction. In: Quantum Computation and Quantum Information (Cambridge University Press, 2000); Chapter 10.
[36]
W. Nolting. In: Quantenmechanik, Vol. 5.2 of Grundkurs Theoretische Physik (Vieweg & Teubner Verlag, 1997); Chapter 6, p. 100.
[37]
E. Andersson and P. Öhberg (Editors). Quantum Information and Coherence. Scottish Graduate Series (Springer, 2014). Lecture notes of SUSSP 67 (2011).
[38]
K.-A. Suominen. Open Quantum Systems and Decoherence. In: Quantum Information and Coherence, Scottish Graduate Series, edited by E. Andersson and P. Öhberg (Springer, 2014); pp. 247–282. Notes from lecture at SUSSP 67 (2011).
[39]
M. H. Devoret. Quantum fluctuations in electrical circuits. In: Quantum Fluctuations, edited by S. Reynaud, E. Giacobino and J. Zinn-Justin (Elsevier, 1997); p. 353. Lecture 10 in session LXIII of the Les Houches Summer School (1995).
[40]
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai and S. Chintala. PyTorch: An Imperative Style, High-Performance Deep Learning Library. In: Proceedings of the 33rd International Conference on Neural Information Processing Systems, edited by H. M. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. A. Fox and R. Garnett (NeurIPS 2019, Vancouver, BC, Canada, Dec 2019); pp. 8024–8035.
[41]
D. W. Juhl, Z. Tošner and T. Vosegaard. Versatile NMR simulations using SIMPSON. In: Annual Reports on NMR Spectroscopy, 100th Edition, edited by G. A. Webb (Elsevier, 2020); Chapter 1, pp. 1–59.
[42]
M. B. Giles. Collected Matrix Derivative Results for Forward and Reverse Mode Algorithmic Differentiation. In: Advances in Automatic Differentiation, Vol. 64 of Lecture Notes in Computational Science and Engineering, edited by C. H. Bischof, H. M. Bücker, P. Hovland, U. Naumann and J. Utke (Springer, Berlin, Heidelberg, 2008); pp. 35–44.
[43]
M. B. Giles. An extended collection of matrix derivative results for forward and reverse mode automatic differentiation. Technical Report NA-08-01 (Oxford University Computing Laboratory, Jan 2008).
[44]
C.-H. Huang and H.-S. Goan. Robust quantum gates for stochastic time-varying noise. Phys. Rev. A 95, 062325 (2017), arXiv:1705.06150.
[45]
A. İmamoğlu and K. B. Whaley. Photoactivated biological processes as quantum measurements. Phys. Rev. E 91, 022714 (2015), arXiv:1408.5798.
[46]
L. C. Evans. An Introduction to Mathematical Optimal Control Theory. Lecture Notes, University of California, Berkeley.
[47]
MATLAB, version 8.4 (R2014a) (The MathWorks Inc., Natick, Massachusetts, 2014).
[48]
E. Jones, T. Oliphant, P. Peterson and others. SciPy: Open source scientific tools for Python (2001–). Project website at https://scipy.org.
[49]
M. Lapert, R. Tehini, G. Turinici and D. Sugny. Monotonically Convergent Optimal Control Theory of Quantum Systems with Spectral Constraints on the Control Field. Phys. Rev. A 79, 063411 (2009), arXiv:0906.1051.
[50]
M. D. Grace, C. Brif, H. Rabitz, D. A. Lidar, I. A. Walmsley and R. L. Kosut. Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments. J. Mod. Opt. 54, 2339 (2007), arXiv:0712.2935.
[51]
M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut and D. A. Lidar. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J. Phys. B 40, S103 (2007), arXiv:quant-ph/0702147.
[52]
J. Grond, G. von Winckel, J. Schmiedmayer and U. Hohenester. Optimal control of number squeezing in trapped Bose-Einstein condensates. Phys. Rev. A 80, 053625 (2009), arXiv:0908.1634.
[53]
J. Grond, J. Schmiedmayer and U. Hohenester. Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603 (2009), arXiv:0806.3877.
[54]
E. Luc-Koenig, M. Vatasescu and F. Masnou-Seeuws. Optimizing the photoassociation of cold atoms by use of chirped laser pulses. Eur. Phys. J. D 31, 239 (2004), arXiv:physics/0407112 [physics.atm-clus].
[55]
C. P. Koch, U. Boscain, T. Calarco, G. Dirr, S. Filipp, S. J. Glaser, R. Kosloff, S. Montangero, T. Schulte-Herbrüggen, D. Sugny and F. K. Wilhelm. Quantum optimal control in quantum technologies. Strategic report on current status, visions and goals for research in Europe. EPJ Quantum Technol. 9, 19 (2022).
[56]
G. Turinici. Quantum control. HAL:hal-00640217 (2012).
[57]
A. Larrouy, S. Patsch, R. Richaud, J.-M. Raimond, M. Brune, C. P. Koch and S. Gleyzes. Fast Navigation in a Large Hilbert Space Using Quantum Optimal Control. Phys. Rev. X 10, 021058 (2020). HAL:hal-02887773.
[58]
A. M. Vecheck, C. McNamee, R. R. Pera and R. J. Usselman. Quantum Biology in Cellular Migration, bioRxiv:2022.09.09.507322 (2022).
[59]
Quantum Computation Roadmap (2004). Version 2.0; April 2, 2004.
[60]
T. Corcovilos and D. S. Weiss. Rydberg Calculations. Private communication.
[61]
J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang. JAX: composable transformations of Python+NumPy programs, https://numpy.org.