References

Cited References

The following references are cited in the documentation. The bibliography is produced with

```@bibliography
```
[1]
C. Brif, R. Chakrabarti and H. Rabitz. Control of quantum phenomena: past, present and future. New J. Phys. 12, 075008 (2010).
[2]
M. H. Goerz, S. C. Carrasco and V. S. Malinovsky. Quantum Optimal Control via Semi-Automatic Differentiation. Quantum 6, 871 (2022).
[3]
D. J. Tannor. Introduction to Quantum Mechanics: A Time-Dependent Perspective. University Science Books, Sausalito, California (2007).
[4]
G. von Winckel and A. Borzì. Computational techniques for a quantum control problem with H$^1$-cost. Inverse Problems 24, 034007 (2008).
[5]
M. Goerz. Optimization of a Controlled Phasegate for Ultracold Calcium Atoms in an Optical Lattice. Diplomarbeit, Freie Universität Berlin (2010).
[6]
M. Goerz. Optimizing Robust Quantum Gates in Open Quantum Systems. Phd thesis, Universität Kassel (2015).
[7]
F. K. Wilhelm, S. Kirchhoff, S. Machnes, N. Wittler and D. Sugny. An introduction into optimal control for quantum technologies, arXiv:2003.10132 (2020).
[8]
E. A. Katrukha, M. Mikhaylova, H. X. van Brakel, P. M. van Bergen en Henegouwen, A. Akhmanova, C. C. Hoogenraad and L. C. Kapitein. Probing cytoskeletal modulation of passive and active intracellular dynamics using nanobody-functionalized quantum dots. Nat. Commun. 8, 14772 (2017), biorXiv:089284.
[9]
F. Sauvage and F. Mintert. Optimal Quantum Control with Poor Statistics. PRX Quantum 1, 020322 (2020). HAL:hal-03612955.
[10]
E. Brion. Contrôle Quantique et Protection de la Cohérence par effet Zénon, Applications à l'Informatique Quantique. Phd thesis, Université Pierre et Marie Curie - Paris VI (2014). HAL:tel-00007910v2.
[11]
H. A. Fürst, M. H. Goerz, U. G. Poschinger, M. Murphy, S. Montangero, T. Calarco, F. Schmidt-Kaler, K. Singer and C. P. Koch. Controlling the transport of an ion: Classical and quantum mechanical solutions. New J. Phys. 16, 075007 (2014). Special issue on coherent control of complex quantum systems.

Other References

The following are non-cited references (everything in the .bib file), included here to show how bibliographies are rendered for various types of materials. The list of references is produced with

```@bibliography
*
```
[12]
M. H. Goerz, T. Calarco and C. P. Koch. The quantum speed limit of optimal controlled phasegates for trapped neutral atoms. J. Phys. B 44, 154011 (2011), arXiv:1103.6050. Special issue on quantum control theory for coherence and information dynamics.
[13]
M. Tomza, M. H. Goerz, M. Musiał, R. Moszynski and C. P. Koch. Optimized production of ultracold ground-state molecules: Stabilization employing potentials with ion-pair character and strong spin-orbit coupling. Phys. Rev. A 86, 043424 (2012), arXiv:1208.4331.
[14]
M. H. Goerz, D. M. Reich and C. P. Koch. Optimal control theory for a unitary operation under dissipative evolution. New J. Phys. 16, 055012 (2014). Special issue on coherent control of complex quantum systems.
[15]
M. H. Goerz, E. J. Halperin, J. M. Aytac, C. P. Koch and K. B. Whaley. Robustness of high-fidelity Rydberg gates with single-site addressability. Phys. Rev. A 90, 032329 (2014), arXiv:1401.1858. Editor's suggestion.
[16]
G. Jäger, D. M. Reich, M. H. Goerz, C. P. Koch and U. Hohenester. Optimal quantum control of Bose-Einstein condensates in magnetic microtraps: Comparison of GRAPE and Krotov optimization schemes. Phys. Rev. A 90, 033628 (2014), arXiv:1409.2976.
[17]
M. H. Goerz, G. Gualdi, D. M. Reich, C. P. Koch, F. Motzoi, K. B. Whaley, J. Vala, M. M. Müller, S. Montangero and T. Calarco. Optimizing for an arbitrary perfect entangler. II. Application. Phys. Rev. A 91, 062307 (2015), arXiv:1412.7350.
[18]
P. Watts, J. Vala, M. M. Müller, T. Calarco, K. B. Whaley, D. M. Reich, M. H. Goerz and C. P. Koch. Optimizing for an arbitrary perfect entangler: I. Functionals. Phys. Rev. A 91, 062306 (2015), arXiv:1412.7347.
[19]
M. H. Goerz, K. B. Whaley and C. P. Koch. Hybrid Optimization Schemes for Quantum Control. EPJ Quantum Technol. 2, 21 (2015).
[20]
M. H. Goerz, F. Motzoi, K. B. Whaley and C. P. Koch. Charting the circuit QED design landscape using optimal control theory, npj Quantum Inf 3, 37 (2017).
[21]
A. A. Setser, M. H. Goerz and J. P. Kestner. Local gradient optimization of modular entangling sequences. Phys. Rev. A 97, 062339 (2018), arXiv:1804.08783.
[22]
M. H. Goerz and K. Jacobs. Efficient optimization of state preparation in quantum networks using quantum trajectories. Quantum Sci. Technol. 3, 045005 (2018), arXiv:1801.04382.
[23]
M. H. Goerz, D. Basilewitsch, F. Gago-Encinas, M. G. Krauss, K. P. Horn, D. M. Reich and C. P. Koch. Krotov: A Python implementation of Krotov's method for quantum optimal control. SciPost Phys. 7, 080 (2019).
[24]
[25]
G. Raithel, A. Duspayev, B. Dash, S. C. Carrasco, M. H. Goerz, V. Vuletić and V. S. Malinovsky. Principles of tractor atom interferometry. Quantum Sci. Technol. 8, 014001 (2022).
[26]
S. C. Carrasco, M. H. Goerz, Z. Li, S. Colombo, V. Vuletić and V. S. Malinovsky. Extreme Spin Squeezing via Optimized One-Axis Twisting and Rotations. Phys. Rev. Applied 17, 064050 (2022), arXiv:2201.01744.
[27]
M. H. Goerz, M. A. Kasevich and V. S. Malinovsky. Robust Optimized Pulse Schemes for Atomic Fountain Interferometry. Atoms 11, 36 (2023), arXiv:2212.12602. Special issue on Advances in and Prospects for Matter Wave Interferometry.
[28]
D. J. Tannor and Y. Jin. Design of Femtosecond Pulse Sequences to Control Photochemical Products. In: Mode Selective Chemistry, editors, J. Jortner, R. D. Levine and B. Pullman, 333–345. Springer (1991).
[29]
M. B. Giles. An extended collection of matrix derivative results for forward and reverse mode automatic differentiation. Technical Report NA-08-01, Oxford University Computing Laboratory (2008).
[30]
C.-H. Huang and H.-S. Goan. Robust quantum gates for stochastic time-varying noise. Phys. Rev. A 95, 062325 (2017), arXiv:1705.06150.
[31]
A. İmamoğlu and K. B. Whaley. Photoactivated biological processes as quantum measurements. Phys. Rev. E 91, 022714 (2015), arXiv:1408.5798.
[32]
L. C. Evans. An Introduction to Mathematical Optimal Control Theory (1983). Lecture Notes, University of California, Berkeley.
[33]
MATLAB, version 8.4 (R2014a). The MathWorks Inc., Natick, Massachusetts (2014).
[34]
E. Jones, T. Oliphant, P. Peterson and others. SciPy: Open source scientific tools for Python (2001–).
[35]
M. Lapert, R. Tehini, G. Turinici and D. Sugny. Monotonically Convergent Optimal Control Theory of Quantum Systems with Spectral Constraints on the Control Field. Phys. Rev. A 79, 063411 (2009), arXiv:0906.1051.
[36]
M. D. Grace, C. Brif, H. Rabitz, D. A. Lidar, I. A. Walmsley and R. L. Kosut. Fidelity of optimally controlled quantum gates with randomly coupled multiparticle environments. J. Mod. Opt. 54, 2339 (2007), arXiv:0712.2935.
[37]
M. Grace, C. Brif, H. Rabitz, I. A. Walmsley, R. L. Kosut and D. A. Lidar. Optimal control of quantum gates and suppression of decoherence in a system of interacting two-level particles. J. Phys. B 40, S103 (2007), arXiv:quant-ph/0702147.
[38]
J. Grond, G. von Winckel, J. Schmiedmayer and U. Hohenester. Optimal control of number squeezing in trapped Bose-Einstein condensates. Phys. Rev. A 80, 053625 (2009), arXiv:0908.1634.
[39]
J. Grond, J. Schmiedmayer and U. Hohenester. Optimizing number squeezing when splitting a mesoscopic condensate. Phys. Rev. A 79, 021603 (2009), arXiv:0806.3877.
[40]
E. Luc-Koenig, M. Vatasescu and F. Masnou-Seeuws. Optimizing the photoassociation of cold atoms by use of chirped laser pulses. Eur. Phys. J. D 31, 239 (2004), arXiv:physics/0407112 [physics.atm-clus].
[41]
G. Turinici. Quantum control. HAL:hal-00640217 (2012).
[42]
A. Larrouy, S. Patsch, R. Richaud, J.-M. Raimond, M. Brune, C. P. Koch and S. Gleyzes. Fast Navigation in a Large Hilbert Space Using Quantum Optimal Control. Phys. Rev. X 10, 021058 (2020). HAL:hal-02887773.
[43]
A. M. Vecheck, C. McNamee, R. R. Pera and R. J. Usselman. Quantum Biology in Cellular Migration, bioRxiv:2022.09.09.507322 (2022).
[44]
Quantum Computation Roadmap (2004). Version 2.0; April 2, 2004.
[45]
T. Corcovilos and D. S. Weiss. Rydberg Calculations. Private communication.
[46]
J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke, J. VanderPlas, S. Wanderman-Milne and Q. Zhang. JAX: composable transformations of Python+NumPy programs.